Add like
Add dislike
Add to saved papers

Suppression of microRNA-384 enhances autophagy of airway smooth muscle cells in asthmatic mouse.

Oncotarget 2017 July 2
Injury to airway smooth muscle (ASM) cells hallmarks the pathological progression of asthma, a chronic inflammatory airway disease. MicroRNAs (miRNAs) play essential roles in the development of asthma as well as airway remodeling. Here we studied the involvement of miRNAs in the regulation of autophagic survival of ASM cells and airway disorder. We analyzed autophagy-associated factors LC3 and Beclin-1 by RT-qPCR and protein blotting in purified airway smooth muscle cells from ovalbumin (OVA)-induced asthmatic mice. The biological activity of miRNA targeting Beclin-1 was explored by bioinformatics method and confirmed in a dual luciferase reporter assay. Loss of function experiment was performed via transplantation of miRNA in OVA-induced asthmatic mice. We detected high autophagy levels in ASM cells, which appeared to result from augmentation of Beclin-1 protein, rather than Beclin-1 mRNA, suggesting presence of post-transcriptional control of Beclin-1. Next, miR-384 was figured out to be a Belcin-1-targeting miRNA, which significantly decreased after OVA treatment. Mechanistically, binding of miR-384 to 3'-UTR of Beclin-1 mRNA potently suppressed Beclin-1 protein translation in ASM cells, similar to previous finding in another cell type. In vivo, transplantation of miR-384 significantly attenuated Belcin-1 protein levels in ASM cells, resulting in reduced autophagy of ASM cells and attenuation of asthmatic features by OVA. Together, these data suggest that re-expression of miR-384 may reduce augmentation of Beclin-1-dependent autophagy of ASM cells, as a novel promising treatment for asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app