Add like
Add dislike
Add to saved papers

Silanization of Sapphire Surfaces for Optical Sensing Applications.

ACS Sensors 2017 April 29
Well-characterized silane layers are essential for optimized attachment of (bio)molecules enabling reliable chem/biosensor performance. Herein, binding properties and orientation of 3-mercaptopropyltrimethoxysilane layers at crystalline sapphire (0001) surfaces were determined by water contact angle measurements, infrared reflection absorption spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Infrared reflection absorption spectroscopy measurements suggest an almost perpendicular arrangement of the MPTMS molecules to the substrate surface. Adhesion force studies between a silicon nitride AFM tip and modified sapphire, gold, and silicon dioxide substrates were investigated by peak force tapping atomic force microscopy and used to define the silane binding properties on these surfaces. As expected, the Al-O-Si bond was determined to be responsible for the layer formation at the sapphire substrate surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app