Add like
Add dislike
Add to saved papers

Plastic deformation mechanisms in a new Ni-base single crystal superalloy at room temperature.

The evolution of dislocation configurations in a new Ni-base single crystal superalloy, M4706, during tensile deformation at room temperature is characterised by transmission electron microscopy. Experimental results show that contrary to previous reports, numerous isolated superlattice stacking faults and extended stacking faults are formed in the slightly deformed specimens with and without tertiary γ' precipitates. Meanwhile, it is also found that as the plastic deformation proceeds, the dominant deformation mechanism changes from stacking fault shearing to antiphase boundary shearing. Finally, based on experimental observations, the reasons for the formation of these faults and the transition in the deformation mechanism are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app