Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

31 P NMR Evidence for Peroxide Intermediates in Lipid Emulsion Photooxidations: Phosphine Substituent Effects in Trapping.

Intralipid is a lipid emulsion used in photodynamic therapy (PDT) for its light scattering and tissue-simulating properties. The purpose of this study is to determine whether or not Intralipid undergoes photooxidation, and we have carried out an Intralipid peroxide trapping study using a series of phosphines [2'-dicyclohexylphosphino-2,6-dimethoxy-1,1'-biphenyl-3-sulfonate, 3-(diphenylphosphino)benzenesulfonate, triphenylphosphine-3,3',3''-trisulfonate and triphenylphosphine]. Our new findings are as follows: (1) An oxygen atom is transferred from Intralipid peroxide to the phosphine traps in the dark, after the photooxidation of Intralipid. 3-(Diphenylphosphino)benzenesulfonate is the most suitable trap in the series owing to a balance of nucleophilicity and water solubility. (2) Phosphine trapping and monitoring by 31 P NMR are effective in quantifying the peroxides in H2 O. An advantage of the technique is that peroxides are detected in H2 O; deuterated NMR solvents are not required. (3) The percent yield of the peroxides increased linearly with the increase in fluence from 45 to 180 J cm-2 based on our trapping experiments. (4) The photooxidation yields quantitated by the phosphines and 31 P NMR are supported by the direct 1 H NMR detection using deuterated NMR solvents. These data provide the first steps in the development of Intralipid peroxide quantitation after PDT using phosphine trapping and 31 P NMR spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app