Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simulated annealing molecular dynamics and ligand-receptor contacts analysis for pharmacophore modeling.

AIM: Ligand-based pharmacophore modeling requires long list of inhibitors, while pharmacophores based on single ligand-receptor crystallographic structure can be too restricted or promiscuous.

METHODOLOGY: This prompted us to combine simulated annealing molecular dynamics (SAMD) with ligand-receptor contacts analysis as means to construct pharmacophore model(s) from single ligand-receptor complex. Ligand-receptor contacts that survive numerous heating-cooling SAMD cycles are considered critical and are used to guide pharmacophore development.

RESULTS: This methodology was implemented to develop pharmacophores for acetylcholinesterase and protein kinase C-θ. The resulting models were validated by receiver-operating characteristic analysis and in vitro bioassay. Assay identified four new protein kinase C-θ inhibitors among captured hits, two of which exhibited nanomolar potencies.

CONCLUSION: The results illustrate the ability of the new method to extract valid pharmacophores from single ligand-protein complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app