Add like
Add dislike
Add to saved papers

Dynamical Ordering of Hydrogen Molecules Induced by Heat Flux.

Achieving a direct nonequilibrium simulation for hydrogen systems has been quite challenging because nuclear quantum effects (NQEs) have to be taken into account. We directly simulated nonequilibrium hydrogen molecules under a temperature gradient with the recently developed nonempirical molecular dynamics method, which describes nonspherical hydrogen molecules with the NQEs. We found dynamical ordering purely induced by heat flux, which should be distinguished from static ordering like orientational alignment, as decelerated translational motions and enhanced intensity of H-H vibrational power spectra despite the little structural ordering. This dynamical ordering, which was enhanced with stronger heat flux while independent of system size, can be regarded as self-solidification of hydrogen molecules for their efficient heat conduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app