Add like
Add dislike
Add to saved papers

Conformational Landscape of Tri-n-butyl Phosphate: Matrix Isolation Infrared Spectroscopy and Systematic Computational Analysis.

The conformations of tri-n-butyl phosphate (TBP) were studied using matrix isolation infrared spectroscopy and density functional theory (DFT) calculations. TBP was trapped in a N2 matrix using both effusive and supersonic sources, and its infrared spectra were recorded. The computational exploration of TBP is a very demanding problem to confront, due to the presence of a large multitude of conformations in TBP. To simplify the problem, computations were done on model compounds, dimethyl butyl phosphate (DMBP) and dibutyl methyl phosphate (DBMP), to systematically arrive at the conformations of TBP that are expected to contribute to its chemistry at room temperature. Some predictive rules seem to simplify this complex conformational landscape problem. The predictive rules that were formulated enabled us to search the relevant portion of the conformational topography of this molecule. The computations were performed at the B3LYP level of theory using the 6-31++G(d,p) basis set. Vibrational wavenumber calculations were also performed for the various conformers to assign the infrared features of TBP, trapped in solid N2 matrix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app