Add like
Add dislike
Add to saved papers

Fractionation and Concentration of High-Salinity Textile Wastewater using an Ultra-Permeable Sulfonated Thin-film Composite.

A sulfonated thin-film composite (TFC) nanofiltration membrane was fabricated using 2,2'-benzidinedisulfonic acid (BDSA) and trimesoyl chloride (TMC) on a polyether sulfone substrate by conventional interfacial polymerization. Due to a nascent barrier layer with a loose architecture, the obtained TFC-BDSA-0.2 membrane showed an ultrahigh pure water permeability of 48.1 ± 2.1 L-1 m-2 h-1 bar-1 , and a considerably low NaCl retention ability of <1.8% over a concentration range of 10-100 g L-1 . The membrane, which possesses a negatively charged surface, displayed an excellent rejection of over 99% toward Congo red (CR) and allowed the fast fractionation of high-salinity textile wastewater. The prepared membrane required only 3-fold water addition to accomplish the separation of multiple components, whereas the commercial NF270 (Dow) membrane required 4-fold water addition and almost double the length of time. Furthermore, the TFC-BDSA-0.2 membrane was subsequently tested for the dye concentration process. It maintained a high flux of 8.2 L-1 m-2 h-1 bar-1 and a negligible dye loss, even when the concentration factor reached ∼10. Finally, by using a 20% alcohol solution as a back-washing medium, a flux recovery ratio (FRR) of 95.6% was achieved with TFC-BDSA-0.2, and the CR rejection ability remained the same. These results prove the outstanding antifouling and solvent-resistant properties of the membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app