Add like
Add dislike
Add to saved papers

A rare polyglycine type II-like helix motif in naturally occurring proteins.

Proteins 2017 November
Common structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PPII or PGII ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PGII -like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PGII -like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen-bonding network of the main-chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PGII -like helix surrounded by six nearly parallel PGII -like helices in a hexagonal array, plus an additional PGII -like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PGII -helix are saturated by either intra- or intermolecular hydrogen-bonds, resulting in a self-contained hydrogen-bonding network. Similar, but incomplete PGII -helix patterns were also previously identified in a GTP-binding protein and an antifreeze protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app