Add like
Add dislike
Add to saved papers

Rhamnolipids Enhance in Vivo Oral Bioavailability of Poorly Absorbed Molecules.

PURPOSE: This report describes the effect of rhamnolipids (RLs) on the tight junctions (TJ) of the intestinal epithelium using the rat in-situ closed loop model.

METHODS: We investigated the transport of 5 (6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-labeled dextrans with average molecular weights of 4.4 and 10 kDa (FD-4 and FD-10) when co-administered with different concentrations of RLs. Lactate dehydrogenase (LDH) leakage assay and histopathological examination of treated intestinal loops were used to assess potential toxicity of RLs. Further, the effect of kaempferol on accelerating the resealing of the tight junctions in vivo was also investigated RESULTS: Data shows that administration of different RLs concentrations (1.0-5.0% v/v) increased CF absorption through rat intestine by 2.84- and 15.82-folds with RLs concentrations of 1.0% and 5.0% v/v, respectively. RLs exhibited size-dependent increase on FD-4 and FD-10 absorption. Dosing RLs at 1.0% v/v didn't cause a significant LDH leakage or histopathological changes to intestinal mucosa compared to higher concentrations, which showed a progressive damaging effect. Using kaempferol, a natural flavonoid that stimulates the assembly of the TJs, proved to enhance the recovery of barrier properties of the intestinal mucosa treated with high concentrations of RLs (2.5% and 5% v/v).

CONCLUSIONS: These results collectively illustrate the ability of RLs to enhance oral bioavailability of different molecules across the intestinal epithelial membrane in a concentration- and time-dependent fashion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app