Add like
Add dislike
Add to saved papers

Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity.

AoB Plants 2017 July
Elevation gradients are frequently used as space-for-time substitutions to infer species' trait responses to climate change. However, studies rarely investigate whether trait responses to elevation are widespread or population-specific within a species, and the relative genetic and plastic contributions to such trait responses may not be well understood. Here, we examine plant trait variation in the dominant woody shrub, Rhododendron maximum, along elevation gradients in three populations in the South Central Appalachian Mountains, USA, in both field and common garden environments. We ask the following: (i) do plant traits vary along elevation? (ii) do trait responses to elevation differ across populations, and if so, why? and (iii) does genetic differentiation or phenotypic plasticity drive trait variation within and among populations? We found that internode length, shoot length, leaf dry mass, and leaf area varied along elevation, but that these responses were generally unique to one population, suggesting that trait responses to environmental gradients are population-specific. A common garden experiment identified no genetic basis to variation along elevation or among populations in any trait, suggesting that plasticity drives local and regional trait variation and may play a key role in the persistence of plant species such as R. maximum with contemporary climate change. Overall, our findings highlight the importance of examining multiple locations in future elevation studies and indicate that, for a given plant species, the magnitude of trait responses to global climate change may vary by location.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app