JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Training Modalities in Robot-assisted Urologic Surgery: A Systematic Review.

European Urology Focus 2017 Februrary
CONTEXT: Novel surgical techniques demand that surgical training adapts to the need for technical and nontechnical skills.

OBJECTIVE: To identify training methods available for robot-assisted surgical (RAS) training in urology, evaluate their effectiveness in terms of validation, educational impact, acceptability, and cost effectiveness, and assess their effect on learning curves (LCs).

EVIDENCE ACQUISITION: A systematic review following Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines searched Ovid Medline, Embase, PsycINFO, and the Cochrane Library. Results were screened to include appropriate studies. Quality was evaluated. Each method was evaluated, and conclusions were drawn regarding LCs.

EVIDENCE SYNTHESIS: Of 359 records, 24 were included (521 participants). Training methods included dry-lab training (n=7), wet-lab training (n=7), mentored training (n=7), and nonstructured pathways (n=5). Dry-lab training demonstrated educational impact by reducing console time and was acceptable in a study; 100% of participants confirmed face validity. Wet-lab training principally uses human cadaveric material; effectiveness is well rated, although dry-lab training and observation were rated as equally useful. Mentored programmes combine lectures, tutorials, observation, simulation, and proctoring. Minifellowships were linked to greater practice of RAS 1 yr later. LCs vary according to experience. One study found that surgeons from robot-related fellowships demonstrated fewer positive surgical margins than surgeons from laparoscopic-related fellowships (24% vs 34.6%; p=0.05) and reduced time (132 vs 152min; p=0.0003). Five studies examined nonstructured training pathways (clinical practice). Experience correlated with fewer complications (p=0.007), improved continence (p=0.049), and reduced time (p=0.002).

CONCLUSIONS: RAS training methods include dry and wet lab, mentored training, and nonstructured pathways. Limited available evidence suggests that they affect LCs differently and are rarely used alone. The different methods of training appear effective when combined. Their benefits must be explored to facilitate validated acceptable training with educational impact.

PATIENT SUMMARY: Robot-assisted training encompasses several methods used in combination, but more evidence is required to gain the greatest benefit and formulate future training pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app