Add like
Add dislike
Add to saved papers

Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazolin-4(3H)-one derivatives as potential PPARγ and SUR agonists.

Peroxisome proliferator-activated receptor gamma (PPARγ) and sulfonylurea receptor (SUR) play crucial roles in management of type-2 diabetes mellitus. In this study, a series of novel quinazoline-4(3H)-one-sulfonylurea hybrids were designed and synthesized as dual PPARγ and SUR agonists. The synthesized compounds were evaluated for their in vivo anti-hyperglycemic activities against STZ-induced hyperglycemic rats. Four compounds (19a , 19d , 19f and 25g) demonstrated potent activities with reduction in blood glucose levels of 40.43, 46.42, 41.23 and 42.50 %, respectively. The most active ten compounds were further evaluated in vitro for their PPARγ binding affinities and insulin-secreting abilities. Compounds 19b , 19d , 19f , 25f and 25g exhibited the highest affinities against PPARγ with IC50 values of 0.371, 0.350, 0.369, 0.408 and 0.353µM, respectively. In addition, compounds 19d , 19f , and 25d showed the highest insulin-secreting activities with EC50 values of 0.97, 1.01 and 1.15µM, respectively. Furthermore, molecular docking and pharmacophore generation techniques were carried out to investigate binding patterns and fit values of the designed compounds with PPARγ and SUR, respectively. Also, two QSAR models were generated to explore the structural requirements controlling the different biological activities of the synthesized compounds against PPARγ and SUR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app