Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides.

Peptide self-assembly has a profound biological significance since self-assembled bioactive peptides are gifted with improved bioactivity as well as life-span. In this study, peptide self-assembly was investigated using a therapeutic peptide, PTP-7S (EENFLGALFKALSKLL). Combining experiments of atomic force microscopy (AFM), circular dichroism (CD), and 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence spectra, PTP-7S showed the α-helical structure and was found self-assembling into nanofibers in solution. Relying on the coarse-grained (CG) dynamic simulations, the self-assembling of PTP-7S was revealed as a stepwise process that peptide monomers first clustered into peptide-assembling units (PUs) with charged surface, and then the PUs integrated together to construct nanofibril aggregates. Different roles of the nonbonded driving forces did play in the two phases: the hydrophobic force and electrostatic interaction acted as the predominant motivations in the formation of PUs and nanofiber, respectively. Moreover, the electrostatic interaction helped to guide the longitudinal growth of peptide nanofibers. A sequence principle is proposed for peptide self-assembling in aqueous solution: a balance of the counter charges and sufficient hydrophobicity degree. The self-assembled PTP-7S displayed good anticancer activity, proteases resistance, and sustained drug-release, showing a great potential for clinical application. This study reveals the molecular mechanism in explaining PTP-7S self-assembly and it is beneficial for future innovation of the self-assembled bioactive peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app