Add like
Add dislike
Add to saved papers

An assembly and interaction of upconversion and plasmonic nanoparticles on organometallic nanofibers: enhanced multicolor upconversion, downshifting emission and the plasmonic effect.

Nanotechnology 2017 October 14
We present novel inorganic-organic hybrid nanoparticles (HNPs) constituting inorganic NPs, NaY0.78 Er0.02 Yb0.2 F4 , and organometallic nanofiber, Tb(ASA)3 Phen (TAP). X-ray diffraction, Fourier transform infrared absorption and transmission electron microscopy analyses reveal that prepared ultrafine upconversion NPs (UCNPs (5-8 nm)) are dispersed on the surface of the TAP nanofibers. We observe that the addition of TAP in UCNPs effectively limits the surface quenching to boost the upconversion (UC) intensity and enables tuning of UC emission from the green to the red region by controlling the phonon frequency around the Er3+ ion. On the other hand, TAP is an excellent source of green emission under ultraviolet exposure. Therefore prepared HNPs not only give enhanced and tunable UC but also emit a strong green color in the downshifting (DS) process. To further enhance the dual-mode emission of HNPs, silver NPs (AgNPs) are introduced. The emission intensity of UC as well as DS emission is found to be strongly modulated in the presence of AgNPs. It is found that AgNPs enhance red UC emission. The possible mechanism involved in enhanced emission intensity and color output is investigated in detail. The important optical properties of these nano-hybrid materials provide a great opportunity in the fields of biological imaging, drug delivery and energy devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app