Add like
Add dislike
Add to saved papers

Benchmarking GATE/Geant4 for 16 O ion beam therapy.

Oxygen ([Formula: see text]) ions are a potential alternative to carbon ions in ion beam therapy. Their enhanced linear energy transfer indicates a higher relative biological effectiveness and a reduced oxygen enhancement ratio. Due to the limited availability of [Formula: see text] ion beams, Monte Carlo (MC) transport codes are important research tools for investigating their potential. The purpose of this study was to validate GATE/Geant4 for [Formula: see text] ion beam therapy using experimental data from literature. Five hadron physics lists and two electromagnetic options were benchmarked against measured depth dose distributions (DDDs) and charge-changing cross sections. The simulated beam ranges deviated by less than 0.5% for all physics configurations and only a few points exceeded the gamma index criterion (2%/1 mm). However, the simulated partial charge-changing cross sections deviated considerably for some hadron physics configurations. Best agreement with the experimental values was obtained with the quantum molecular dynamics model (QMD), and we therefore suggest using this model in Geant4 to accurately describe the fragmentation of [Formula: see text] ion beams into lighter fragments ([Formula: see text]).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app