Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ensemble and Single Particle Fluorescence Characterization of Dye-Labeled Cellulose Nanocrystals.

Cellulose nanocrystals (CNCs) have been covalently labeled with both fluorescein and rhodamine and studied by a combination of UV-vis absorption spectroscopy and ensemble and single molecule fluorescence spectroscopy. For all samples, the fluorescence anisotropy and lifetimes were consistent with effects expected for covalently bound dye molecules. Low dye loading levels (∼0.1 dye/particle) were estimated for the fluorescein-labeled CNC which coupled with the strong pH dependence make this a less suitable fluorophore for most applications. Rhodamine-labeled CNCs were prepared from both sulfated and carboxylated CNCs and had loading levels that varied from 0.25 to ∼15 dye molecules/CNC. For the sulfated samples, the absorption due to (nonfluorescent) dimeric dye increased with dye loading; in contrast, the carboxylated sample, which had the highest rhodamine content, had a low dimer yield. Single particle fluorescence studies for two of the rhodamine-labeled CNCs demonstrated that individual particles are readily detected by their stepwise blinking/bleaching behavior and by polarization effects. Overall, the results indicate the importance of understanding the effects of loading on dye photophysics to select an optimal dye concentration to maximize sensitivity while minimizing the effect of the dye on the CNC behavior. The results also demonstrate that CNCs with relatively low dye loadings (e.g., ∼1 dye/particle) are readily detectable by fluorescence and should be adequate for use in fluorescence-based biological assays or to probe the distribution of CNCs in composite materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app