Add like
Add dislike
Add to saved papers

Iminocyclohexadienylidenes: Carbenes or Diradicals? The Hetero-Wolff Rearrangement of Benzotriazoles to Cyanocyclopentadienes and 1H-Benzo[b]azirines.

The thermal rearrangements of benzotriazole 1 to fulvenimine 4 and 1H-benzazirine 7 are investigated at DFT and CASPT2 levels of theory. Ring opening of benzotriazole 1 to 2-diazo-cyclohexadienimine 2 followed by N2 elimination affords Z- and E-2-iminocyclohexadienylidenes 3, which have triplet ground states (3 A″). The open-shell singlet (OSS) (1 A″) and closed-shell singlet (CSS) (1 A') of 3 lie ∼15 and 40 kcal/mol higher in free energy, respectively. The OSS 3 (1 A″) is best described as a 1,3-diradical, whereas the CSS (1 A') has the character of a carbene. A hetero-Wolff rearrangement of OSS 3 yields fulvenimine 4, which is a precursor of cyanocyclopentadiene 5, with a calculated activation barrier of 38 kcal/mol at the CASPT2(8,8) level, whereby there is a surface crossing from the OSS to the CSS near the transition state. The barrier for cyclization to 1H-benzo[b]azirine 7 is only ∼13 kcal/mol. Therefore, reaction paths involving the singlet iminocyclohexadienylidene diradicals 3 will necessarily cause equilibration with 1H-benzazirine 7 prior to ring contraction to iminofulvene 4 and cyanocyclopentadiene 5, in agreement with experimental observations based on13 C labeling. The thermolysis of 1-acetylbenzotriazole 7 leads to the analogous N-acetyl-diazocyclohexadienimines 8, N-acetyliminocyclohexadienylidene diradicals 9, and N-acetylfulvenimine 10. The E-N-acetyliminocyclohexadienylidene E9 ring closes to the N-acetyl-1H-benzazirine 11 prior to ring contraction to N-acetylfulvenimine 10, and the Z-N-acetyl-2-diazocyclohexadienimine Z8 ring closes to 2-methylbenzoxazole 12. 1H-benzazirines are predicted to be spectroscopically observable species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app