JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Good Things in Small Packages: an Innovative Delivery Approach for Inhaled Insulin.

PURPOSE: The design development of a small, hand held, battery operated, breath actuated inhaler as a drug/device platform for inhaled insulin posed a number of technical challenges. Our goal was to optimize lung deposition and distribution with aerosol generators producing 3-6 μm particle size distribution.

METHODS: In silico modeling with computational fluid dynamics (CFD) and in vitro testing of device components were assessed using an Alberta idealized adult airway (Copley, UK) to optimize mouthpiece and aerosol path design for dose delivered distal to the trachea. Human factors use testing was designed to determine the ability to perform inspiratory manuevers with LED guidance within target flow limits. In vivo testing with healthy normal subjects of radiolabeled aerosol compared 2 breathing patterns for lung deposition efficiency, distribution, and subject preference.

RESULTS: CFD demonstrated that flows ≤5 L/min and ≥15 L/min reduced the delivery efficiencg. Prototypes tested with inspiratory flow of 10 L/min provided up to 70% of dose delivered distal to the model throat with aerosols of 3 to 6 μm. Users guided by LED were able to inhale for 8-24 s with 5 s breath hold. Lung dose >70% with peripheral to central ratios >2.0 were achieved, with subject preference for the longer inspiratory time with breath hold.

CONCLUSION: The device design phase integration led to a novel design and inspiratory pattern with greater levels of peripheral deposition than previously reported with commercial inhalers. The rationale and process of the application of these methods are described with implications for use in future device development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app