Add like
Add dislike
Add to saved papers

TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity.

Scientific Reports 2017 July 18
ROS1 rearrangement is observed in 1-2% of non-small cell lung cancers (NSCLC). The ROS1 tyrosine kinase inhibitor (TKI) crizotinib has induced marked tumour shrinkage in ROS1-rearranged cancers. However, emergence of acquired resistance to TKI is inevitable within a few years. Previous findings indicate that cabozantinib overcomes secondary mutation-mediated crizotinib-resistance in ROS1-fusion-positive cells. Here we attempted to establish cabozantinib-resistant cells by N-ethyl-N-nitrosourea mutagenesis screening using CD74-ROS1-expressing Ba/F3 cells. Two resistant cell lines with CD74-ROS1 F2004V or F2075C mutations, which are homologous to ALK F1174 or F1245 mutations, survived in the presence of a low dose of ROS1-TKI. Removal of ROS1-TKI from these TKI-addicted cells induced excessive activation of ROS1 tyrosine kinase followed by apoptosis. We succeeded in recapturing the TKI-addicted phenotype using doxycycline-inducible CD74-ROS1 mutant over-expression in Ba/F3 cells, suggesting that excessive ROS1 oncogenic signaling itself induced apoptosis instead of cell growth. Phosphoproteomic analysis and high-throughput inhibitor screening revealed that excessive ROS1 signaling in the TKI-addicted cells phosphorylated or activated apoptosis-related molecules such as FAF1 or p38. Collectively, our findings partly clarify molecular mechanisms of excessive ROS1 oncogenic signaling that mediates paradoxical induction of apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app