Add like
Add dislike
Add to saved papers

Utility of human hepatocyte spheroids without feeder cells for evaluation of hepatotoxicity.

We investigated the utility of three-dimensionally cultured hepatocytes (spheroids) without feeder cells (Sph(f-)) for the prediction of drug-induced liver injury (DILI) in humans. Sph(f-) and spheroids cultured on feeder cells (Sph(f+)) were exposed to the hepatotoxic drugs flutamide, diclofenac, isoniazid and chlorpromazine at various concentrations for 14 days, and albumin secretion and cumulative leakages of toxicity marker enzymes, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and γ-glutamyl transpeptidase (γ-GTP), were measured. The cumulative AST, LDH or γ-GTP leakages from Sph(f-) were similar to or greater than those from Sph(f+) for all drugs tested, although ALT leakages showed no consistent difference between Sph(f+) and Sph(f-). In the case of Sph(f-), significant correlations among all the toxicity markers except for γ-GTP were observed. As regards the drug concentrations causing 1.2-fold elevation of enzyme leakage (F1.2), no consistent difference between Sph(f+) and Sph(f-) was found, although several F1.2 values were undetermined, especially in Sph(f+). The IC50 of albumin secretion and F1.2 of AST leakage from Sph(f-) were equal to or lower than those of Sph(f+) for all the tested drugs. These results indicate that feeder cells might contribute to resistance to hepatotoxicity, suggesting DILI could be evaluated more accurately by using Sph(f-). We suggest that long-term exposure of Sph(f-) to drugs might be a versatile method to predict and reproduce clinical chronic toxicity, especially in response to repeated drug administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app