Add like
Add dislike
Add to saved papers

A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells.

Ca2+ - and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature ( Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2 -/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322 , disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app