JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MRI magic-angle effect in femorotibial cartilages of the red kangaroo.

OBJECTIVE: Kangaroo knee cartilages are robust tissues that can support knee flexion and endure high levels of compressive stress. This study aimed to develop a detailed understanding of the collagen architecture in kangaroo knee cartilages and thus obtain insights into the biophysical basis of their function.

DESIGN: Cylindrical/square plugs from femoral and tibial hyaline cartilage and tibial fibrocartilage were excised from the knees of three adult red kangaroos. Multi-slice, multi-echo MR images were acquired at the sample orientations 0° and 55° ("magic angle") with respect to the static magnetic field. Maps of the transverse relaxation rate constant (R2 ) and depth profiles of R2 and its anisotropic component (R2 A ) were constructed from the data.

RESULTS: The R2 A profiles confirmed the classic three-zone organisation of all cartilage samples. Femoral hyaline cartilage possessed a well-developed, thick superficial zone. Tibial hyaline cartilage possessed a very thick radial zone (80% relative thickness) that exhibited large R2 A values consistent with highly ordered collagen. The R2 A profile of tibial fibrocartilage exhibited a unique region near the bone (bottom 5-10%) consistent with elevated proteoglycan content ("attachment sub-zone").

CONCLUSIONS: Our observations suggest that the well-developed superficial zone of femoral hyaline cartilage is suitable for supporting knee flexion; the thick and well-aligned radial zone of tibial hyaline cartilage is adapted to endure high compressive stress; while the innermost part of the radial zone of tibial fibrocartilage may facilitate anchoring of the collagen fibres to withstand high shear deformation. These findings may inspire new designs for cartilage tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app