JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Crystalline Polymorphism Emerging From a Milling-Induced Amorphous Form: The Case of Chlorhexidine Dihydrochloride.

In this paper, solid-state amorphization induced by mechanical milling is shown to be a useful tool to explore the polymorphism of drugs and their mechanism of devitrification. We show in particular how the recrystallization of amorphous chlorhexidine dihydrochloride obtained by milling reveals a complex polymorphism that involves several polymorphic forms. Two new crystalline forms are identified, one of them appearing as a highly disordered precursor state which however clearly differs from the amorphous one. Several interpretations are here proposed to describe the puzzling nature of this phase. In addition, the possibility to amorphize chlorhexidine dihydrochloride by milling allowed to determine the main physical characters of the amorphous state which cannot be obtained through the usual thermal quench of the liquid because of a strong chemical degradation occurring on melting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app