Add like
Add dislike
Add to saved papers

Subcritical water-hydrolyzed fish collagen ameliorates survival of endotoxemic mice by inhibiting HMGB1 release in a HO-1-dependent manner.

To investigate potential mechanisms underlying the bioactivity of hydrolyzed fish collagen, we examined the anti-inflammatory actions of subcritical water-hydrolyzed fish collagen (SWFC) in lipopolysaccharide (LPS)-triggered inflammation and endotoxemia. SWFC markedly inhibited LPS-stimulated release of high mobility group box 1 (HMGB1) in murine RAW264.7 macrophages, along with decreased cytosolic translocation of HMGB1. Both the protein and mRNA levels of heme oxygenase-1 (HO-1) were significantly upregulated in SWFC-treated RAW 264.7 cells in an Nrf2-dependent manner. In line with these effects of SWFC, both HO-1 siRNA and ZnPPIX (zinc protoporphyrin IX) actually attenuated the effects of SWFC on HMGB1 release stimulated by LPS, indicating a possible mechanism by which SWFC modulates HMGB1 release through HO-1 signaling. Notably, administration of SWFC improved the survival rates of LPS-injected endotoxemic mice, in which the serum level of HMGB1 was significantly reduced. Taken together, these results indicate that the anti-inflammatory activities of SWFC are achieved by inhibiting HMGB1 release induced by LPS in a HO-1-sensitive manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app