JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface.

Covalent Organic Frameworks (COFs) are a class of porous covalent materials which are frequently synthesized as unprocessable crystalline powders. The first COF was reported in 2005 with much effort centered on the establishment of new synthetic routes for its preparation. To date, most available synthetic methods for COF synthesis are based on bulk mixing under solvothermal conditions. Therefore, there is increasing interest in developing systematic protocols for COF synthesis that provide for fine control over reaction conditions and improve COF processability on surfaces, which is essential for their use in practical applications. Herein, we present a novel microfluidic-based method for COF synthesis where the reaction between two constituent building blocks, 1,3,5-benzenetricarbaldehyde (BTCA) and 1,3,5-tris(4-aminophenyl)benzene (TAPB), takes place under controlled diffusion conditions and at room temperature. Using such an approach yields sponge-like, crystalline fibers of a COF material, hereafter called MF-COF. The mechanical properties of MF-COF and the dynamic nature of the approach allow the continuous production of MF-COF fibers and their direct printing onto surfaces. The general method opens new potential applications requiring advanced printing of 2D or 3D COF structures on flexible or rigid surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app