JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Electrospinning of Photocatalytic Electrodes for Dye-sensitized Solar Cells.

This work demonstrates a protocol to fabricate a fiber-based photoanode for dye-sensitized solar cells, consisting of a light-scattering layer made of electrospun titanium dioxide nanofibers (TiO2-NFs) on top of a blocking layer made of commercially available titanium dioxide nanoparticles (TiO2-NPs). This is achieved by first electrospinning a solution of titanium (IV) butoxide, polyvinylpyrrolidone (PVP), and glacial acetic acid in ethanol to obtain composite PVP/TiO2 nanofibers. These are then calcined at 500 °C to remove the PVP and to obtain pure anatase-phase titania nanofibers. This material is characterized using scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The photoanode is prepared by first creating a blocking layer through the deposition of a TiO2-NPs/terpineol slurry on a fluorine-doped tin oxide (FTO) glass slide using doctor blading techniques. A subsequent thermal treatment is performed at 500 °C. Then, the light-scattering layer is formed by depositing a TiO2-NFs/terpineol slurry on the same slide, using the same technique, and calcinating again at 500 °C. The performance of the photoanode is tested by fabricating a dye-sensitized solar cell and measuring its efficiency through J-V curves under a range of incident light densities, from 0.25-1 Sun.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app