Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres.

ACS Nano 2017 August 23
Highly anisometric nanoparticles have distinctive mechanical, electrical, and thermal properties and are therefore appealing candidates for use as self-assembly building blocks. Here, we demonstrate that ultra-anisometric nanoplates, which have a nanoscale thickness but a micrometer-scale edge length, offer many material design capabilities. In particular, we show that these nanoplates "copolymerize" in a predictable way with patchy spheres (Janus and triblock particles) into one- and two-dimensional structures with tunable architectural properties. We find that, on the pathway to these structures, nanoplates assemble into chains following the kinetics of molecular step-growth polymerization. In the same mechanistic framework, patchy spheres control the size distribution and morphology of assembled structures, by behaving as monofunctional chain stoppers or multifunctional branch points during nanoplate polymerization. In addition, both the lattice constant and the stiffness of the nanoplate assemblies can be manipulated after assembly. We see highly anisometric nanoplates as one representative of a broader class of dual length-scale nanoparticles, with the potential to enrich the library of structures and properties available to the nanoparticle self-assembly toolbox.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app