Add like
Add dislike
Add to saved papers

Metal-Organic Framework-Derived FeCo-N-Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media.

ChemSusChem 2017 August 11
Metal-organic frameworks (MOFs) are ideal precursors/ templates for porous carbons with homogeneous doping of active components for energy storage and conversion applications. Herein, metalloporphyrinic MOFs, PCN-224-FeCo, with adjustable molar ratio of Fe(II) /Co(II) alternatively residing inside the porphyrin center, were employed as precursors to afford FeCo-N-doped porous carbon (denoted as FeCo-NPC) by pyrolysis. Thanks to the hollow porous structure, the synergetic effect between highly dispersed FeNx and CoNx active sites accompanied with a high degree of graphitization, the optimized FeCo2 -NPC-900 obtained by pyrolysis at 900 °C exhibits more positive half-wave potential, higher diffusion-limited current density, and better stability than the state-of-the-art Pt/C, under both alkaline and acidic media. More importantly, the current synthetic approach based on MOFs offers a rational strategy to structure- and composition-controlled porous carbons for efficient electrocatalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app