Add like
Add dislike
Add to saved papers

Impermeable Robust Hydrogels via Hybrid Lamination.

Hydrogels have been proposed for sensing, drug delivery, and soft robotics applications, yet most of these materials suffer from low mechanical robustness and high permeability to small molecules, limiting their widespread use. This study reports a general strategy and versatile method to fabricate robust, highly stretchable, and impermeable hydrogel laminates via hybrid lamination of an elastomer layer bonded between hydrogel layers. By controlling the layers' composition and thickness, it is possible to tune the stiffness of the impermeable hydrogels without sacrificing the stretchability. These hydrogel laminates exhibit ultralow surface coefficients of friction and, unlike common single-material hydrogels, do not allow diffusion of various molecules across the structure due to the presence of the elastomer layer. This feature is then used to release different model drugs and, in a subsequent experiment, to sense different pH conditions on the two sides of the hydrogel laminate. A potential healthcare application is shown using the presented method to coat medical devices (catheter, tubing, and condom) with hydrogel, to allow for drug release and sensing of environmental conditions for gastrointestinal or urinary tract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app