Add like
Add dislike
Add to saved papers

Enhancing Performance of Nonfullerene Acceptors via Side-Chain Conjugation Strategy.

Advanced Materials 2017 September
A side-chain conjugation strategy in the design of nonfullerene electron acceptors is proposed, with the design and synthesis of a side-chain-conjugated acceptor (ITIC2) based on a 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']di(cyclopenta-dithiophene) electron-donating core and 1,1-dicyanomethylene-3-indanone electron-withdrawing end groups. ITIC2 with the conjugated side chains exhibits an absorption peak at 714 nm, which redshifts 12 nm relative to ITIC1. The absorption extinction coefficient of ITIC2 is 2.7 × 105 m-1 cm-1 , higher than that of ITIC1 (1.5 × 105 m-1 cm-1 ). ITIC2 exhibits slightly higher highest occupied molecular orbital (HOMO) (-5.43 eV) and lowest unoccupied molecular orbital (LUMO) (-3.80 eV) energy levels relative to ITIC1 (HOMO: -5.48 eV; LUMO: -3.84 eV), and higher electron mobility (1.3 × 10-3 cm2 V-1 s-1 ) than that of ITIC1 (9.6 × 10-4 cm2 V-1 s-1 ). The power conversion efficiency of ITIC2-based organic solar cells is 11.0%, much higher than that of ITIC1-based control devices (8.54%). Our results demonstrate that side-chain conjugation can tune energy levels, enhance absorption, and electron mobility, and finally enhance photovoltaic performance of nonfullerene acceptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app