Add like
Add dislike
Add to saved papers

Reliable quantification of marrow fat content and unsaturation level using in vivo MR spectroscopy.

PURPOSE: To develop a novel technique for reliable quantification of bone marrow fat content and composition using in vivo MR spectroscopy (MRS).

METHODS: An MRS quantification method combining both advantages of Voigt line shape model and time-domain analysis was developed. The proposed method was tested using computer-simulated data and in vivo data acquired at lumbar vertebral bodies of 23 subjects (age, 83.8 ± 3.7 y; male, n = 13; female, n = 10) from L1 to L4. Reliability and reproducibility were calculated for the quantification results. Comparisons between the proposed method and some conventional methods were conducted.

RESULTS: Low mean absolute percentage errors and low mean coefficients of variation for computer simulations suggest that the proposed method is accurate and precise. By using this method, marrow fat content can be quantified reliably, even for data with low spectral resolution and low signal-to-noise ratio (SNR). Unsaturation level can be reliably quantified for data with moderate spectral resolution and moderate SNR. Results obtained from in vivo data using the proposed method demonstrated better model fit than conventional methods.

CONCLUSION: The method proposed in this study has better performance than conventional methods in the quantification of bone marrow MRS data and has great potential for wide applications of studying marrow fat content and composition. Magn Reson Med 79:1722-1729, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app