Add like
Add dislike
Add to saved papers

A Rapidly-Incremented Tethered-Swimming test for Defining Domain-Specific Training Zones.

The purpose of this study was to investigate whether a tethered-swimming incremental test comprising small increases in resistive force applied every 60 seconds could delineate the isocapnic region during rapidly-incremented exercise. Sixteen competitive swimmers (male, n = 11; female, n = 5) performed: (a) a test to determine highest force during 30 seconds of all-out tethered swimming (Favg) and the ΔF, which represented the difference between Favg and the force required to maintain body alignment (Fbase), and (b) an incremental test beginning with 60 seconds of tethered swimming against a load that exceeded Fbase by 30% of ΔF followed by increments of 5% of ΔF every 60 seconds. This incremental test was continued until the limit of tolerance with pulmonary gas exchange (rates of oxygen uptake and carbon dioxide production) and ventilatory (rate of minute ventilation) data collected breath by breath. These data were subsequently analyzed to determine whether two breakpoints defining the isocapnic region (i.e., gas exchange threshold and respiratory compensation point) were present. We also determined the peak rate of O2 uptake and exercise economy during the incremental test. The gas exchange threshold and respiratory compensation point were observed for each test such that the associated metabolic rates, which bound the heavy-intensity domain during constant-work-rate exercise, could be determined. Significant correlations (Spearman's) were observed for exercise economy along with (a) peak rate of oxygen uptake (ρ = .562; p < 0.025), and (b) metabolic rate at gas exchange threshold (ρ = -.759; p < 0.005). A rapidly-incremented tethered-swimming test allows for determination of the metabolic rates that define zones for domain-specific constant-work-rate training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app