Add like
Add dislike
Add to saved papers

First-principles equation-of-state table of beryllium based on density-functional theory calculations.

Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ  = 0.001 to 500 g/cm3 and temperature T  = 2000 to 108  K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table ( SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ∼10% stiffer than the last two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ∼20%. By implementing the FPEOS table into the 1-D radiation-hydrodynamic code LILAC , we studied the EOS effects on beryllium-shell-target implosions. The FPEOS simulation predicts higher neutron yield (∼15%) compared to the simulation using the SESAME 2023 EOS table.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app