Add like
Add dislike
Add to saved papers

Introduction of sample tubes with sodium azide as a preservative for ethyl glucuronide in urine.

Ethyl glucuronide (EtG) is a direct alcohol marker, which is widely used for clinical and forensic applications, mainly for abstinence control. However, the instability of EtG in urine against bacterial degradation or the post-collectional synthesis of EtG in contaminated samples may cause false interpretation of EtG results in urine samples. This study evaluates the potential of sodium azide in tubes used for urine collection to hinder degradation of ethyl glucuronide by bacterial metabolism taking place during growth of bacterial colonies. The tubes are part of a commercial oral fluid collection device. The sampling system was tested with different gram-positive and gram-negative bacterial species previously observed in urinary tract infections, such as Escherichia coli, Staphylococcus aureus, Enterecoccus faecalis, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa. Inhibition of bacterial growth by sodium azide, resulting in lower numbers of colony forming units compared to control samples, was observed for all tested bacterial species. To test the prevention of EtG degradation by the predominant pathogen in urinary tract infection, sterile-filtered urine and deficient medium were spiked with EtG, and inoculated with E. coli prior to incubation for 4 days at 37 °C in tubes with and without sodium azide. Samples were collected every 24 hours, during four consecutive days, whereby the colony forming units (CFU) were counted on Columbia blood agar plates, and EtG was analyzed by LC-MS/MS. As expected, EtG degradation was observed when standard polypropylene tubes were used for the storage of contaminated samples. However, urine specimens collected in sodium azide tubes showed no or very limited bacterial growth and no EtG degradation. As a conclusion, sodium azide is useful to reduce bacterial growth of gram-negative and gram-positive bacteria. It inhibits the degradation of EtG by E. coli and can be used for the stabilization of EtG in urine samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app