JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

EXO1 suppresses double-strand break induced homologous recombination between diverged sequences in mammalian cells.

DNA Repair 2017 September
DNA double-strand breaks (DSBs) can be repaired through several mechanisms, including homologous recombination (HR). While HR between identical sequences is robust in mammalian cells, HR between diverged sequences is suppressed by DNA mismatch-repair (MMR) components such as MSH2. Exonuclease I (EXO1) interacts with the MMR machinery and has been proposed to act downstream of the mismatch recognition proteins in mismatch correction. EXO1 has also been shown to participate in extensive DSB end resection, an initial step in the HR pathway. To assess the contribution of EXO1 to HR in mammalian cells, DSB-inducible reporters were introduced into Exo1-/- mouse embryonic stem cells, including a novel GFP reporter containing several silent polymorphisms to monitor HR between diverged sequences. Compared to HR between identical sequences which was not clearly affected, HR between diverged sequences was substantially increased in Exo1-/- cells although to a lesser extent than seen in Msh2-/- cells. Thus, like canonical MMR proteins, EXO1 can restrain aberrant HR events between diverged sequence elements in the genome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app