Add like
Add dislike
Add to saved papers

Native point defects on hydrogen-passivated 4H-SiC (0001) surface and the effects on metal adsorptions.

With the continued expansion of silicon carbide's (SiC) applications, atomistic understanding on the native point defects of its surfaces, particularly on those of the hydrogen-passivated (HP) 4H-SiC (0001) surface, becomes imperative. Using first-principles calculations, the structures and formation energies of several typical native point defects (e.g., ISi , IC , VSi , VC , and SiC ) on the (0001) HP-surface of 4H-SiC were systematically explored, including the effects of the unit cell size, environmental condition, charge state, and hydrogen incorporation. Furthermore, their adsorptions of Ag (Mo) atom on these defective sites were systematically investigated. The formation energies of these defects in the HP-surface, clean surface, and bulk SiC were concluded together with their thermodynamic concentrations in the HP-surface estimated. The influences of these defects to metal (Ag, Mo) adsorptions of HP-surfaces were concluded. Based on these conclusions, the wettability improvement between the metal liquid and ion (Ag or Mo) implanted SiC substrates in the previous studies can be well understood at the atomistic scale. This study provides a theoretical guideline to SiC surface modification for the production of metal-SiC composites, brazing of SiC with metals, fabrication of electronic devices, or the growth of two dimensional nanofilms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app