Add like
Add dislike
Add to saved papers

The eΠg3 state of C 2 : A pathway to dissociation.

The lowest 13 vibrational levels, v = 0-12, of the eΠg3 state of the C2 molecule have been measured by laser-induced fluorescence of new bands of the Fox-Herzberg system. The newly observed levels, v = 5-12, which span the eΠg3 electronic state up to and beyond the first dissociation threshold of C2 , were analyzed to afford highly accurate molecular constants, including band origins, and rotational and spin-orbit constants. The spin-orbit coupling constants of the previously published lowest five levels are revised in sign and magnitude, requiring an overhaul of previously published molecular constants. The analysis is supported by high level ab initio calculations. Lifetimes of all observed levels were recorded and found to be in excellent agreement with ab initio predicted values up to v = 11. v = 12 was found to exhibit a much reduced lifetime and fluorescence quantum yield, which is attributed to the onset of predissociation. This brackets the dissociation energy of ground state XΣg+1 C2 between 6.1803 and 6.2553 eV, in agreement with the Active Thermochemical Tables.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app