JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reciprocal modulation of helper Th1 and Th17 cells by the β2-adrenergic receptor agonist drug terbutaline.

FEBS Journal 2017 September
Catecholamine hormones are powerful regulators of the immune system produced by the sympathetic nervous system (SNS). They regulate the adaptive immune system by altering T-cell differentiation into T helper (Th) 1 and Th2 cell subsets, but the effect on Th17 cells is not known. Th17 cells, defined, in part, by chemokine receptor CCR6 and cytokine interleukin (IL)-17A, are crucial for mediating certain pathogen-specific responses and are linked with several autoimmune diseases. We demonstrated that a proportion of human Th17 cells express beta 2-adrenergic receptor (β2AR), a G protein-coupled receptor that responds to catecholamines. Activation of peripheral blood mononuclear cells, which were obtained from venous blood drawn from healthy volunteers, with anti-cluster of differentiation 3 (CD3) and anti-CD28 and with a β2-agonist drug, terbutaline (TERB), augmented IL-17A levels (P < 0.01) in the majority of samples. TERB reduced interferon gamma (IFNγ) indicating that IL-17A and IFNγ are reciprocally regulated. Similar reciprocal regulation was observed with dbcAMP. Proliferation of Th cells was monitored by carboxyfluorescein diacetate N-succinimidyl ester labeling and flow cytometry with antibody staining for CD3 and CD4. TERB increased proliferation by a small but significant margin (P < 0.001). Next, Th17 cells (CD4+ CXCR3- CCR6+ ) were purified using an immunomagnetic positive selection kit, which removes all other mononuclear cells. TERB increased IL-17A from purified Th17 cells, which argues that TERB acts directly on Th17 cells. Thus, hormone signals from the SNS maintain a balance of Th cells subtypes through the β2AR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app