Add like
Add dislike
Add to saved papers

Effects of salinity, C/S ratio, S/N ratio on the BESI process, and treatment of nanofiltration concentrate.

A laboratory-scale biodegradation and electron transfer based on the sulfur metabolism in the integrated (BESI® ) process was used to treat a saline petrochemical nanofiltration concentrate (NFC). The integrated process consisted of activated sludge sulfate reduction (SR), and sulfide oxidation (SO) reactors, and a biofilm nitrification reactor. During the process, the total removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were 76.2, 83.8, and 73.1%, respectively. In the SR reactor, most of the organic degradation occurred and approximately 70% COD were removed by the sulfate-reducing bacteria (SRB). In the SO reactor, both the autotrophic and heterotrophic denitrifications were observed to take place. In parallel, batch experiments were conducted to detect the effects of different C/S and S/N ratios on COD removal and denitrification efficiency. The batch experiments were also conducted to detect the effects of salinity on COD and sulfate reduction. The composition of pollutants in the wastewater was complex, and some existing organics were not degraded by the SRB. The non-SRB groups also played important roles in the reactor. Under salinity-induced stress, the metabolisms of the SRBs and non-SRB groups were both inhibited. However, 6 g/L NaCl did not have much effect on the final COD removal efficiency. In the batch experiments, the added sulfide served as the electron donor for autotrophic denitrification. The added organics provided substance for heterotrophic denitrification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app