Add like
Add dislike
Add to saved papers

Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste.

Extremozymes have gained importance for their ability to efficiently develop the processes in rigorous industrial conditions with incidence in the recycling of especially robust natural wastes. The production of an extracellular laccase from the halophilic bacterium Chromohalobacter salexigens aided for the bio-delignification of almond shell was optimized using response surface methodology followed by one-factor-at-a-time, resulting in an 80-fold increase in the enzyme yield. Out of 10 different medium components, CuSO4 , ZnSO4 , glucose, and urea were shown to have the greatest effects on the laccase production. The crude laccase was surprisingly stable against the various solvents, salts, chemicals, pH ranges, and temperatures, and it exhibited a high catalytic efficiency to a wide range of phenolic and non-phenolic substrates. Laccase reduced the kappa number of the lignin of almond shell by approximately 27% without the aid of a mediator, and the delignification efficiency strengthened by up to 58% reduction in kappa number in the used harsh conditions. Due to the high potential of the enzyme in delignification, specifically under extreme conditions, laccase from C. salexigens can be considered as an ideal alternative for chemical treatment methods in cellulose fibres extraction of lignocellulosic bio-wastes or delignification of the lignin and lignin-derived industrial wastes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app