Add like
Add dislike
Add to saved papers

Differential TBXA2 receptor transcript stability is dependent on the C924T polymorphism.

BACKGROUND: In order to better characterize the molecular mechanisms involved in processing mutated transcripts, we investigated the post-transcriptional role of the C924T polymorphism (rs4523) located in the 3' region of the TBXA2R gene.

METHODS AND RESULTS: Experiments of dose response with Actinomycin D on MEG-01 human cell line showed a significant decrease on cell viability that was more evident on cells treated for 24h. In addition, we showed that treatments with 5-10μM, 15μM and 20μM of actinomycin D reduced cell viability by 44%, 72% and 75%, respectively, compared to the control group. Conversely, the samples treated with 1μM of actinomycin D did not show significant difference on cell viability as compared to the control group. Analysis of the steady state mRNA level of TBXA2R by qRT-PCR evidenced an increase in mRNA stability for the wild type (C) compared to the mutant (T) allele. Furthermore, the expression levels of TBXA2R on wild type (CC) and mutant type (TT) patients, based on C924T polymorphism, were analyzed. The wild type showed a higher expression of TBXA2 receptor also with two different degrees of glycosylation (55 and 64kDa), when compared to the mutant. These observations correlated with platelet aggregation, which was reduced in TT, independently of the platelet aggregation stimuli.

CONCLUSIONS: The instability of the TBXA2R transcript and the lack of effect on platelet aggregation might suggest a protective role for the TBXA2R TT genotype against atherothrombosis and its complications in high-risk aspirin-treated patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app