Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Semi-quantitative Influenza A population averages from a multiplex respiratory viral panel (RVP): potential for reflecting target sequence changes affecting the assay.

Virology Journal 2017 July 15
BACKGROUND: Yearly influenza virus mutations potentially affect the performance of molecular assays, if nucleic acid changes involve the sequences in the assay. Because individual patient viral loads depend on variables such as duration of illness, specimen type, age, and immunosuppression, we examined seasonal population averages of positive tests to smooth inherent variability.

METHODS: We studied the population seasonal averages of the semi-quantitative nAMPs for the influenza matrix and hemagglutinin genes in the GenMark (Carlsbad, CA) Respiratory Viral Panel assay between 3 institutions over 3 Influenza seasons.

RESULTS: Population average nAMPs were strikingly consistent between separate institutions, but differed substantially between H3N2 and H1N1 seasons. In the 2012-2013 and 2014-2015 influenza seasons, matrix gene H3N2 nAMP averages were 50-70% less than those of the same assay in the 2013-2014 H1N1 season. Influenza strains representative of these seasons were grown in tissue culture and when the supernatant virus was adjusted to the same copy number using a TaqMan assay, the same relative differences were reproduced in the RVP assay. Because the sequences for the PCR and PCR product detection in the GenMark assay are proprietary, the manufacturer provided single stranded DNA matching the capture probe for the representative H3N2 (3 mismatches) and H1N1 strains (2 different mismatches). Equimolar concentrations of these synthetic DNA sequences gave average nAMP values that closely correlated with the average nAMPS of the representative strains and their respective seasonal averages.

CONCLUSIONS: Seasonal averages of semi-quantitative data may provide a means to follow assay performance as a reflection of the effects of molecular drift.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app