Add like
Add dislike
Add to saved papers

Continuous-variable approach to the spectral properties and quantum states of the two-component Bose-Hubbard dimer.

A bosonic gas formed by two interacting species trapped in a double-well potential features macroscopic localization effects when the interspecies interaction becomes sufficiently strong. A repulsive interaction spatially separates the species into different wells while an attractive interaction confines both species in the same well. We perform a fully analytic study of the transitions from the weak- to the strong-interaction regime by exploiting the semiclassical method in which boson populations are represented in terms of continuous variables. We find an explicit description of low-energy eigenstates and spectrum in terms of the model parameters which includes the neighborhood of the transition point. To test the effectiveness of the continuous-variable method we compare its predictions with the exact results found numerically. Numerical calculations confirm the spectral collapse evidenced by this method when the space localization takes place.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app