Add like
Add dislike
Add to saved papers

Monte Carlo study of the ordering in a strongly frustrated liquid crystal.

We have performed Monte Carlo simulations to investigate the temperature dependence of the ordering of the side chains of the X-shaped liquid crystal molecules which are arranged in a hexagonal array. Each hexagon contains six side chains, one from each side of the hexagon. Each liquid crystal molecule has two, dissimilar, side chains, one that contains silicon and one that contains fluorine. Like chains attract each other more strongly than unlike chains and this drives an order-disorder transition. The system is frustrated because it is not possible to find a configuration in which all the hexagons are occupied by either all silicon or all fluorine chains. There are two phase transitions. If only pairwise interactions are included it is found that there is an interesting fluctuating phase between the disordered phase and the fully ordered ground state. This did not agree with the experiments where an intermediate phase was seen that had long range order on one of the three sublattices. Agreement was found when the calculations were modified to include attractive three-body interactions between the silicon chains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app