Add like
Add dislike
Add to saved papers

Coupling conditions for globally stable and robust synchrony of chaotic systems.

We propose a set of general coupling conditions to select a coupling profile (a set of coupling matrices) from the linear flow matrix of dynamical systems for realizing global stability of complete synchronization (CS) in identical systems and robustness to parameter perturbation. The coupling matrices define the coupling links between any two oscillators in a network that consists of a conventional diffusive coupling link (self-coupling link) as well as a cross-coupling link. The addition of a selective cross-coupling link in particular plays constructive roles that ensure the global stability of synchrony and furthermore enables robustness of synchrony against small to nonsmall parameter perturbation. We elaborate the general conditions for the selection of coupling profiles for two coupled systems, three- and four-node network motifs analytically as well as numerically using benchmark models, the Lorenz system, the Hindmarsh-Rose neuron model, the Shimizu-Morioka laser model, the Rössler system, and a Sprott system. The role of the cross-coupling link is, particularly, exemplified with an example of a larger network, where it saves the network from a breakdown of synchrony against large parameter perturbation in any node. The perturbed node in the network transits from CS to generalized synchronization (GS) when all the other nodes remain in CS. The GS is manifested by an amplified response of the perturbed node in a coherent state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app