Add like
Add dislike
Add to saved papers

Einstein relation and hydrodynamics of nonequilibrium mass transport processes.

We derive hydrodynamics of paradigmatic conserved-mass transport processes on a ring. The systems, governed by chipping, diffusion, and coalescence of masses, eventually reach a nonequilibrium steady state, having nontrivial correlations, with steady-state measures in most cases not known. In these processes, we analytically calculate two transport coefficients, bulk-diffusion coefficient and conductivity. Remarkably, the two transport coefficients obey an equilibrium-like Einstein relation even when the microscopic dynamics violates detailed balance and systems are far from equilibrium. Moreover, we show, using a macroscopic fluctuation theory, that the probability of large deviation in density, obtained from the above hydrodynamics, is in complete agreement with the same derived earlier by Das et al. [Phys. Rev. E 93, 062135 (2016)2470-004510.1103/PhysRevE.93.062135] using an additivity property.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app