Add like
Add dislike
Add to saved papers

Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply.

Commercial-scale bio-refineries are designed to process 2000tons/day of single lignocellulosic biomass. Several geographical areas in the United States generate diverse feedstocks that, when combined, can be substantial for bio-based manufacturing. Blending multiple feedstocks is a strategy being investigated to expand bio-based manufacturing outside Corn Belt. In this study, we developed a model to predict continuous envelopes of biomass blends that are optimal for a given pretreatment condition to achieve a predetermined sugar yield or vice versa. For example, our model predicted more than 60% glucose yield can be achieved by treating an equal part blend of energy cane, corn stover, and switchgrass with alkali pretreatment at 120°C for 14.8h. By using ionic liquid to pretreat an equal part blend of the biomass feedstocks at 160°C for 2.2h, we achieved 87.6% glucose yield. Such a predictive model can potentially overcome dependence on a single feedstock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app