Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selective Deamination of Mutagens by a Mycobacterial Enzyme.

Structure-based methods are powerful tools that are being exploited to unravel new functions with therapeutic advantage. Here, we report the discovery of a new class of deaminases, predominantly found in mycobacterial species that act on the commercially important s-triazine class of compounds. The enzyme Msd from Mycobacterium smegmatis was taken as a representative candidate from an evolutionarily conserved subgroup that possesses high density of Mycobacterium deaminases. Biochemical investigation reveals that Msd specifically acts on mutagenic nucleobases such as 5-azacytosine and isoguanine and does not accept natural bases as substrates. Determination of the X-ray structure of Msd to a resolution of 1.9 Å shows that Msd has fine-tuned its active site such that it is a hybrid of a cytosine as well as a guanine deaminase, thereby conferring Msd the ability to expand its repertoire to both purine and pyrimidine-like mutagens. Mapping of active site residues along with X-ray structures with a series of triazine analogues aids in deciphering the mechanism by which Msd proofreads the base milieu for mutagens. The genome location of the enzyme reveals that Msd is part of a conserved cluster that confers the organism with innate resistance toward select xenobiotics by triggering their efflux.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app