Add like
Add dislike
Add to saved papers

Real-time fiber-optic anemometer based on a laser-heated few-layer graphene in an aligned graded-index fiber.

Optics Letters 2017 July 16
A real-time all-fiber anemometer based on laser-heated few-layer graphene in aligned graded-index fibers has been proposed and experimentally demonstrated. The proposed fiber-optic anemometer was composed of a pair of all-fiber collimators by using aligned graded-index fibers that was coated with the few-layer graphene. The few-layer graphene was heated through a heating light from a 532-nm laser, which changed the optical transmittance of signal light with the wavelength of 1550 nm. The wind speed can be measured through the transmission power of the signal light based on the wind cooling effects on the heated few-layer graphene, acting as a "hot-wire" anemometer. The experimental results show that the maximum sensitivity of the anemometer reaches -22.03  μW/(m/s), and a fast response time of as 0.064 s can be achieved. The proposed fiber sensor can be used for the real-time measurement of wind speed in the fields of environmental monitoring, oil exploration, oceanography research, etc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app